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Motivation: recovering a speed of sound by layer stripping

Reconstruction of the front face of an acoustic lens using a variant of the
Boundary Control method [de Hoop-Kepley-L.O.].

We find the speed sound c(x) in ∂2
t u − c2∆u = 0 given u and ∂νu on the

boundary/surface for many solutions u. This is easiest near the boundary.



Motivation: recovering a speed of sound by layer stripping

True speed of sound (blue curve) and the reconstructed one (red triangles)
as a function of depth along a ray path.



Boundary normal coordinates for the lens

Reconstruction is computed on a rectangular patch in boundary normal
coordinates.

The boundary normal coordinates degenerate behind the lens.



Focusing ray paths

I In theory, the Boundary Control method avoids problems related to
focusing by recovering the speed of sound in patches.

I The data needs to be continued across regions where the speed of
sound is already known.

Some ray paths emanating from a point at the surface.



Unique continuation

I In theory, the data can be extended by using unique continuation.

I The rest of the talk focuses on numerical analysis of unique
continuation in the frequency domain.

c(x)=?

c(x)=?

c(x)=?

Left. Wave field that reflects at the bottom of a slab. Right. The same
snapshots computed without knowing the speed of sound below the red
line [de Hoop-Kepley-L.O.].



Unique continuation problem for the Helmholtz equation

Consider three open, connected and non-empty sets ω ⊂ B ⊂ Ω in Rn.

Unique continuation problem. Given u|ω determine u|B for a solution u to
the Helmholtz equation ∆u + k2u = 0 in Ω.



Conditional Hölder stability/three solid balls inequality

If B does not touch the boundary of Ω, then the unique continuation
problem is conditionally Hölder stable.

For all k ≥ 0 there are C > 0 and α ∈ (0, 1) such that

‖u‖H1(B) ≤ C (‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

)α ‖u‖1−α
H1(Ω) .

I In general, the constant C depends on k .
I If there is a line that intersects B but not ω, then C blows up faster

than any polynomial in k .
I This can be shown by constructing a WKB solution localizing on the

line (quasimode with non-homogeneous boundary conditions).

I Assuming suitable convexity, the constant C is independent of k .



Isakov’s increased stability estimate

ω

B

In a convex setting as above, it holds that

‖u‖L2(B) ≤ CF + Ck−1Fα ‖u‖1−α
H1(Ω) ,

where F = ‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

and the constants C and α are

independent of k .



Shifting in the Sobolev scale

Recall that F = ‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

. In Isakov’s estimate,

‖u‖L2(B) ≤ CF + Ck−1Fα ‖u‖1−α
H1(Ω) , (1)

the sides of the inequality are at different levels in the Sobolev scale.

For a plane wave u(x) = e ikkkx , with |kkk| = k , it holds that

‖u‖H1(ω) ∼ (1 + k) ‖u‖L2(ω) .

This suggest that the analogue of (1), with both the sides at the same
level in the Sobolev scale, could be

‖u‖L2(B) ≤ CkE + CEα ‖u‖1−α
L2(Ω) ,

where E = ‖u‖L2(ω) +
∥∥∆u + k2u

∥∥
H−1(Ω)

.



Shifting in the Sobolev scale

Recall that E = ‖u‖L2(ω) +
∥∥∆u + k2u

∥∥
H−1(Ω)

. We show a stronger

estimate than

‖u‖L2(B) ≤ CkE + CEα ‖u‖1−α
L2(Ω) .

Lemma [Burman-Nechita-L.O]. For a suitable convex geometry
ω ⊂ B ⊂ Ω. There are C > 0 and α ∈ (0, 1) such that for all k ∈ R

‖u‖L2(B) ≤ CEα ‖u‖1−α
L2(Ω) .

Our numerical analysis is based on this estimate.



On the convexity assumption

We prove the estimate only in the particular geometry

This is a model for a local problem near a point on ∂B assuming that ∂B
is convex there. In what follows, we will consider only this geometry.



Stabilized finite element method

We use the shorthand notation

G (u, z) = (∇u,∇z)− k2(u, z),

(·, ·) = (·, ·)L2(Ω), ‖·‖ω = ‖·‖L2(ω) .

The stabilized FEM for the unique continuation problem is based on
finding the critical point of the Lagrangian functional

Lq(u, z) =
1

2
‖u − q‖2

ω +
1

2
s(u, u)− 1

2
s∗(z , z),+G (u, z),

on a scale of finite element spaces Vh, h > 0. Here q ∈ L2(ω) is the data.

The crux of the method is to choose suitable regularizing terms s(u, u)
and s∗(z , z). They are defined only in the finite element spaces.



Error estimates

For a suitable choice of a scale of finite element spaces Vh, h > 0, and
regularizing terms s(u, u) and s∗(z , z), we show that

Lq(u, z) =
1

2
‖u − q‖2

ω +
1

2
s(u, u)− 1

2
s∗(z , z) + G (u, z),

has a unique critical point (uh, zh) ∈ Vh, and that for all k , h > 0,
satisfying kh ≤ 1, it holds that

‖u − uh‖L2(B) ≤ Chαk2α−2
(
‖u‖H2(Ω) + k2 ‖u‖L2(Ω)

)
.

Here u is the solution to the unique continuation problem{
∆u + k2u = 0,

u|ω = q.



Error estimates with noisy data

Consider now the case that u|ω = q is known only up to an error
δq ∈ L2(ω). That is, we assume that q̃ = q + δq is known.

Let (uh, zh) ∈ Vh be the minimizer of the perturbed Lagrangian Lq̃.
Then for all k , h > 0, satisfying kh ≤ 1, it holds that

‖u − uh‖L2(B) ≤ Chαk2α−2
(
‖u‖H2(Ω) + k2 ‖u‖L2(Ω) + h−1 ‖δq‖L2(ω)

)
,

where u is again the solution to the unique continuation problem{
∆u + k2u = 0,

u|ω = q.



On previous literature

Several authors, e.g. Bourgeois, Klibanov, ..., have considered the unique
continuation problem for the Helmholtz equation from the computational
point of view.

I They use the quasi-reversibilty method originating from
[Lattès-Lions’67]

I No rate of convergence with respect to the mesh size is proven

For related problems, there are also methods based on Carleman estimates
on discrete spaces e.g. by Le Rousseau.

Stabilized finite element methods for unique continuation, with proven
convergence rates, have been recently developed in the following cases

I Laplace equation [Burman’14]

I Heat equation [Burman-L.O.]



Details of the finite element method
Let us now specify s and s∗ and the domain Vh for the Lagrangian

Lq(u, z) =
1

2
‖u − q‖2

ω +
1

2
s(u, u)− 1

2
s∗(z , z),+G (u, z).

Let Vh be the H1-conformal approximation space based on the P1 finite
element over a suitable triangulation of Ω. Here h is the mesh size. Set

Vh = Vh ×Wh, Wh = Vh ∩ H1
0 (Ω).

Denote by Fh the set of internal faces of the triangulation, and define

J(u, u) =
∑
F∈Fh

∫
F

hJn · ∇uK2
F ds, u ∈ Vh,

where Jn · ∇uKF is the jump of the normal derivative. Set γ = 10−5 and

s(u, u) = γJ(u, u) + γ
∥∥hk2u

∥∥2

L2(Ω)
, s∗(z , z) = ‖∇z‖2

L2(Ω) .



Computational example: a convex case

The unique continuation problem for the Helmholtz equation in the unit
square with k = 10. The exact solution is u(x , y) = sin kx√

2
cos ky√

2
.

We use a regular mesh with 2× 256× 256 triangles.

Left. True u. Right. Minimizer uh of the Lagrangian Lq. Here ω is the
region touching left, bottom and right sides.



Computational example: a non-convex case

The same example except that ω is changed.

Left. True u. Right. Minimizer uh of the Lagrangian Lq. Here ω is the
rectangular region touching only the bottom side.



Comparison of the errors

Left. Convex case Right. Non-convex case. Note that the scales differ by
two orders of magnitude.



Convergence: the convex case

Circles: H1-error, rate ≈ 0.64; squares: L2-error, rate ≈ 0.66; down
triangles: h−1J(uh, uh), rate ≈ 1; up triangles: s∗(zh, zh)1/2 , rate ≈ 1.3.



Convergence: the non-convex case



Convergence: the effect of noise in the convex case

Left. Perturbation O(h). Right. Perturbation O(h2).



Ideas towards the proof in the case k = 0

Consider the Lagrangian

Lq(u, z) =
1

2
‖u − q‖2

ω +
1

2
s(u, u)− 1

2
s∗(z , z),+(∇u,∇z),

on the discrete space Vh ×Wh, Wh = Vh ∩ H1
0 (Ω), with

s(u, u) = J(u, u) =
∑
F∈Fh

∫
F

hJn · ∇uK2
F ds, s∗(z , z) = ‖∇z‖2 .

The critical points (u, z) of Lq satisfy the normal equations

DuLqv = 0, DzLqw = 0,

for all v ∈ Vh and w ∈Wh.



Reformulation of the normal equations

The normal equations

DuLqv = 0, DzLqw = 0, (2)

can be rewritten as A[(u, z), (v ,w)] = (q, v)ω. Here

Lq =
1

2
‖u − q‖2

ω +
1

2
s(u, u)− 1

2
s∗(z , z),+(∇u,∇z),

DuLqv = (u − q, v)ω + s(u, v) + (∇v ,∇z),

DzLqw = −s∗(z ,w) + (∇u,∇w),

A[(u, z), (v ,w)] = (u, v)ω + s(u, v) + (∇v ,∇z)− s∗(z ,w) + (∇u,∇w).

The well-posedness of (2) follows from the weak coercivity

|‖(u, z)‖| ≤ C sup
(v ,w)∈Vh×Wh

A[(u, z), (v ,w)]

|‖(v ,w)‖|
.



Weak coercivity

Recall that s(u, u) = J(u, u) and s∗(z , z) = ‖∇z‖2. We have

A[(u, z), (u,−z)] = (u, u)ω + s(u, u) + (∇u,∇z) + s∗(z , z)− (∇u,∇z)

= ‖u‖2
ω + J(u, u) + ‖∇z‖2

=: |‖(u, z)‖|2.

By Poincaré’s inequality ‖∇z‖ is a norm on Wh = Vh ∩ H1
0 (Ω).

Lemma. |‖u‖|2 := ‖u‖2
ω + J(u, u) is a norm on Vh.

Proof. If |‖u‖| = 0 then u = 0 on ω. As Vh is H1 conformal, u can not
have a tangential jump across a face. As J(u, u) = 0, u can not have a
normal jump across a face. Thus u can not change across a face, and
therefore u = 0 identically.



Very rough sketch of the convergence

Let (uh, zh) be the critical point of the Lagrangian Lq where q = u|ω and
∆u = 0. Define the residual

r = ∆(uh − u).

The Hölder stability estimate gives

‖uh − u‖L2(B) ≤ C (‖uh − u‖L2(ω) + ‖r‖H−1(Ω))α ‖uh − u‖1−α
L2(Ω) .

I ‖uh − u‖L2(ω) + ‖r‖H−1(Ω) ≤ Ch ‖u‖H2(Ω) follows from interpolation
and weak coercivity, similarly with the usual FEM convergence.

I ‖uh − u‖L2(Ω) ≤ C ‖u‖H2(Ω) follows from (interpolation, weak
coercivity and) the quantitative version of the previous lemma:

Lemma. ‖u‖L2(Ω) ≤ Ch−1(‖u‖2
ω + J(u, u)) for u ∈ Vh.



Convergence

Let (uh, zh) be the critical point of the Lagrangian Lq where{
∆u = 0,

q = u|ω.

Then

‖uh − u‖L2(B) ≤ Chα ‖u‖H2(Ω) .

We emphasize that α is the exponent in the continuum stability estimate.


